The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines
نویسنده
چکیده
The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.
منابع مشابه
Efficiency at maximum power: An analytically solvable model for stochastic heat engines
We study a class of cyclic Brownian heat engines in the framework of finite-time thermodynamics. For infinitely long cycle times, the engine works at the Carnot efficiency limit producing, however, zero power. For the efficiency at maximum power, we find a universal expression, different from the endoreversible Curzon-Ahlborn efficiency. Our results are illustrated with a simple one-dimensional...
متن کاملA Finite-Time Thermal Cycle Variational Optimization with a Stefan-Boltzmann Law for Three Different Criteria
This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT). Using an endoreversible Curzon–Ahlborn (CA) heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of ...
متن کاملAssociation of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine
In recent decades, the approach known as Finite-Time Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature hs T ) and a heat sink (at temperature cs T ). The aim of this paper is to propose a more complete approach based on the association of Finite-Time Thermodynamics and the Bond-Graph approach for mod...
متن کاملEfficiency at maximum power output of linear irreversible Carnot-like heat engines.
The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the ...
متن کاملAssociation of Finite-Dimension Thermodynamics and a Bond-Graph Approach for Modeling an Irreversible Heat Engine
In recent decades, the approach known as Finite-Dimension Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature Ths) and a heat sink (at temperature Tcs). We will show in this paper that the approach detailed in a previous paper [1] can be used to analytically model irreversible heat engines (with an add...
متن کامل